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Abstract: Part dimensional inaccuracies serve as a barrier from adopting Additive Manufacturing (AM) 

processes in mass production. Fused Deposition Modeling (FDM) is a thermoplastic based low cost AM 

process which can create conceptual models, prototypes and end user industrial parts. The current study 

involves predicting the optimal parameter settings and significant parameter for reduced geometric 

deviations in printed part using Nylon filament reinforced with 20% carbon fiber. Five input factors 

such as build orientation, layer thickness, infill density, raster angle and infill pattern have been 

considered for preparing the experimental layout through taguchi’s mixed fractional factorial design. 

The changes in length, width and thickness of the printed part from CAD value have been evaluated 

individually through ANOVA and Signal to Noise Ratio method (Smaller the better). Layer thickness is 

significant only for variations in length, but build orientation affects both width and thickness 

dimensions. The geometric deviations are further analyzed using combined multi criteria decision 

making (MCDM) approaches such as Entropy-CoCoSo and PCA-TOPSIS. The optimal parameter 

settings obtained for reduced geometric deviations is found to be Flat orientation, 0.1mm layer 

thickness, 50% infill density, 0° raster angle and cubic infill pattern. Layer thickness is found to be 

highly significant parameter influencing the geometric deviations subsequently followed by build 

orientation from both the MCDM methods. The multi response performance index values obtained from 

Entropy-CoCoSo has been trained using classification algorithms such as decision tree, random forest 

and Naïve Bayes. Naïve Bayes algorithm outperformed other methods with highest classification 

accuracy of 99.4% in a training-testing split ratio of 75:25. 
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1. Introduction  
Manufacturing industries have undergone a massive shift in way of producing components from 

traditional means. Manufacturing industries apply physical or chemical processes for attaining the 

desired changes or transformations in raw materials with the involvement of machineries, technologies 

and skilled manpower. Industry 4.0 is a current trend in manufacturing, where production is carried out 

using highly automated technologies that provide more exact quality control, faster time to market, and 

less complexity [1]. Additive manufacturing (AM) or 3D printing can be defined as any process which 

creates parts from CAD file by adding layers one over another with fascinating benefits such as less 

waste, zero tooling and instant response to any shape formation [2]. Fused Deposition Modeling (FDM) 

is one such AM process which falls under material extrusion technique where the initial material in the 

form of thin wire or filament extruded through a heated nozzle to deposit layers of material one over 

another to create the final part [3]. FDM process involves numerous parameters which can be categorized 

as material specific, machine specific and operation specific which has significant impact over the part 

produced as an individual or in combination with other parameter. FDM process is continuously 

expanding its material library due to its potential in creating parts at low cost and less complexity.  
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Metals, ceramics, polymers and their composites can be used as feedstock in FDM machine for 

conceptual models, functional prototypes and end use industrial parts. ABS and PLA are the most widely 

adopted materials used in FDM process due to their flexibility to undergo the process at low operating 

conditions [4]. Due to their beneficial qualities, like being light in weight, flexible, self-lubricating, and 

having excellent resistance to chemical environments, polymers are widely used in a variety of sectors. 

Despite the fact that polymers like plastic pose a serious threat to the environment, industrial products 

are still being developed using this material because of its unbeatable advantages. Polymer matrix 

composites have proven to be a viable option for many industrial applications, including those in 

automotive, packaging, aerospace, and the field of medicine. Owing to the disadvantages associated with 

FDM parts such as poor mechanical properties, high surface roughness and dimensional inaccuracies, 

porous structure, optimization of FDM process parameters are highly essential to produce parts matching 

the demand of industrial scenario. Ji-man et.al [5] evaluated the dimensional accuracy of 3D printed 

dental casts printed by different techniques such as FDM, SLA, DLP and Polyjet. The authors have 

reported that the dimensional accuracy of FDM printed dental cast is inferior and it has undergone 

contraction at cylindrical locations. Radomir et.al [6] investigated the effect of FDM process parameters 

over surface roughness and dimensional accuracy of PLA thermoplastic. Both the output responses are 

severely affected by layer height. Prairit et.al [7] predicted the dimensional accuracy of FDM parts 

printed using ABS and PLA material through response surface methodology coupled with supervised 

machine learning algorithms. The overall average percentage deviation is around 6% and ABS parts has 

significant lower deviations than PLA. Dimensional and surface texture characterization of ABS-plus 

material have been carried out by Nunez et.al [8] by varying layer thickness and infill density. Low 

dimensional error is resulted from 0.178 mm layer thickness and 100% infill density. Noriega et.al [9] 

adopted artificial neural network for reducing the dimensional error and they have recommended that 

ANN has the capability to predict the accuracy of dimensional error with low error percentage. Rupinder 

and Alok [10] employed barrel finishing process for reducing the surface roughness and dimensional 

deviations by varying five different parameters for shapes such as rhomboid and cube shaped FDM parts. 

The post processing of FDM parts through barrel finishing process has reduced the stair stepping effect 

with low dimensional deviations to an acceptable level. Nathan and Albert [11] proposed a simplified 

benchmarking model for with part features such as rectangular boss, rectangular void, cylindrical boss 

and a cylindrical void. For assessing the dimensional accuracy of FDM parts. The proposed model is 

found to have better performance than the models proposed in the past studies. The dimensional accuracy 

of aluminium matrix composite using taguchi L9 orthogonal array is performed by Rupinder singh et.al 

[12] by incorporating nylon-6 waste based reinforced filament. Taguchi based optimization of parameter 

settings have reduced the dimensional error by 1.49%.Chohan et.al [13] employed statistically controlled 

vapor smoothing process for enhancing the dimensional accuracy of FDM printed biomedical implants 

and they have reported that the post processing technique has shown appreciable improvements in 

dimensional accuracy. The analysis and optimization of dimensional accuracy, porosity for high impact 

polystyrene material through evolutionary algorithms has been performed by Manjunath et.al [14]. The 

optimal process conditions obtained has recommended for low layer thickness and 100% infill density 

for reduced dimensional error and porosity formation. Both Bald eagle search and Rao 3 algorithms are 

computationally efficient for attaining global solutions. Sherri et.al [15] discussed the effect of raster 

angle and build orientation over dimensional error for eleven different materials. The information shared 

by the authors serve as a good resource for understanding the effect of FDM parameters over dimensional 

accuracy for different materials. 

The application of designed experiments and computational algorithms for obtaining the optimal 

process settings for enhancing the mechanical properties and reducing the process shortcomings such as 

surface roughness, dimensional error and porosity are widespread [16, 17]. Methods such as multi 

criteria decision making are found to be efficient in identifying the optimal conditions towards combined 

objectives in many research problems. Phaneendra et.al [18] combined taguchi and grey relational 

analysis for optimizing the mechanical properties of E-glass/polyester composites. Sudhagaret.al [19] 
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adopted both TOPSIS and grey relational analysis for improving the process outputs from friction stir 

welding process for aluminium 2024 alloy. The optimal conditions arrived from both the methods are 

found to be same. Pooja et.al [20] optimized FDM process parameters for PLA material using grey 

relational analysis and optimal conditions has shown an improvement of 10.10% bin grey relational 

grade compared with initial settings. 

Machine Learning (ML) algorithms have grabbed the attention of researchers due to their potential 

in arriving the feasible solution at lesser time with greater accuracy. The adoption of ML algorithms in 

FDM parameter optimization has been witnessed recently. Vijaykumar et.al [21] optimized FDM 

process parameters using desirability approach and machine learning regressor for PLA material. The 

models developed by both the methods are able to predict tensile, impact and flexural strength with low 

error percentage. Juan et.al [22] predicted surface roughness of FDM parts using decision tree methods 

for PETG material. Random forest algorithm performed better in prediction of surface roughness than 

other methods such as C4.5 and random tree algorithms. 

In addition, dimensional error studies have been combined with other part characteristics such as 

surface roughness by many authors. Prithu et.al [23] combined both dimensional error and surface 

roughness n their study to optimize the FDM process parameters for PET-G parts. The authors have 

varied four different FDM parameters such as layer thickness, print speed, extrusion temperature and 

raster width with five levels through central composite design. The sample printed for evaluation consists 

flat, inclined and curved surfaces for measuring surface roughness and dimensional error. The errors 

measured have been further analyzed for development of mathematical models. ANFIS have been 

employed to test and train the experimental outcomes to predict them for new set of process parameters. 

The validation carried out ensures the potential of ANFIS in predicting the experimental outcomes with 

less error. Nagendra et.al [24] printed tensile tests specimens and evaluated the dimensional accuracy of 

the polycarbonate samples through taguchi orthogonal array and calculated the international tolerance 

grade for the dimensions involved. The optimum parameter combination for the linear and radial 

dimension observed are found to be similar in terms of layer thickness and part orientation with 0.1 mm 

and flat positioned part printing, but it differs in case of raster angle which stimulated the need of multi 

objective optimization of process parameters. The calculated IT grades have shown that linear dimension 

has lower IT grade than radial dimension. Aslani et.al [25] employed techniques such as grey relational 

grade, analysis of variance and analysis of means for analyzing the dimensional accuracy of part printed 

using PLA. The authors have printed parts with two different set of parameter combinations and the 

second phase setting (optimized parameter setting) is found to possess better dimensional accuracy than 

the first one. 

There are many application of the carbon nylon filaments in manufacturing industry for tooling, 

functional prototypes, sporting goods, drones which are useful in the fields of automotive, aerospace, 

robotics where the parts require to have high mechanical properties such as strength, stiffness, maintain 

dimensional stability, rigidity, durability etc.  

The literature survey carried out unveils the inability of FDM process to create parts with good 

dimensional accuracy. The current study considers five different FDM parameters such as layer 

thickness, build orientation, infill density, raster angle and infill pattern varying in different levels as per 

L18 mixed fractional factorial design using Minitab 17.0. The sample for the study has been prepared in 

accordance with Shore D hardness ASTM D2240 standard to ascertain the dimensional inaccuracies 

resulting in the printed part using Nylon 6/66 copolymer filament reinforced with 20% carbon fiber. The 

prepared samples are checked for dimensional accuracy by checking the sample’s length, width and 

thickness using digital vernier caliper. The experimental values is further analyzed using combined 

approach of Entropy – CoCoSo and PCA-TOPSIS methodologies for identifying the optimal parameter 

settings which can reduce the dimensional inaccuracies. The multi response performance index resulting 

from the combination of different methods have been analyzed using ANOVA to find the significant 

factor affecting the output responses and its crucial contribution among the input parameters considered. 

The MRPI values are further trained and tested using machine learning algorithms to correlate the 
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optimal parameter settings obtained from MCDM method. The proposed research methodology has been 

depicted in the form of flow chart at Figure 1. 

 
Figure 1. Proposed Research Methodology 

 

2. Materials and methods  
The current section details about the filament material and FDM printer adopted for preparing 

sample. The section also highlights about the technique behind the experimental layout followed in 

making the samples. 

 

2.1. Filament material  

The filament material for the study was supplied by eSun, China with nylon 6/66 copolymer as the 

matrix phase and 20% carbon fiber as the reinforcing material. The addition of carbon fiber greatly 

increases the strength, rigidity and toughness of nylon, and can replace metal materials in many 

occasions. Self-lubricating wear resistance makes this carbon fiber 3d printer filament suitable for 

printing gears. It has high dimensional stability, excellent printability and superior abrasive resistance. 
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The filament is of 1.75mm diameter and black colored. Table 1 represents various properties of nylon 

carbon fiber filament.  

 

Table 1. Various Properties of Filament Material 

S.No Parameter / Characteristic S.I Unit Value 

1 Density g/m3 1.24 

2 Melt flow index g/10 min 11.46 

3 Tensile Strength MPa 140 

4 Elongation at break % 10.61 

5 Flexural Modulus MPa 4363 

6 Izod impact strength kJ/m2 18.67 

7 Extruder Temperature ºC 260-300 

8 Bed temperature ºC 45-60 

9 Printing Speed mm/s 40-100 

 

2.2. FDM printer  

Flash forge Creator 3 Pro, a professional FDM printer made from china has been used for sample 

preparation in the current study and shown in Figure 2. The machine comprises dual extruder which can 

extrude filaments through the heated nozzle with maximum extrusion temperature of 320 ºC. The 

machine has a build volume of 300x250x200 mm which is in good accordance with the dimensions of 

almost all ISO and ASTM standard testing samples. The machine supports multi-mode printing and 

flexible heated bed supports for the easy removal of printed part from the machine. The machine has 

good compatibility for printing materials such as PLA / ABS / PA / PC / PVA / HIPS / PETG / Wood / 

ASA and their fiber reinforced composite filaments. Extrusion nozzles with varying materials such as 

stainless steel and carbon steel can be used with optional diameters such as 0.4, 0.6 and 0.8mm. CURA 

slicing software is adopted for slicing the 3D model in to thin layers and variation of other input factors. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Flash forge Creator 3 Pro FDM Printer 
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2.3. Design of Experiments 

Designed experiments play a pivotal role in experimental research as it provides highly accurate 

results at lesser number of experiments and low cost. Taguchi’s orthogonal array can be used for 

designing experimental trials by varying input parameters to desired levels for conducting experiments. 

The current study considers mixed level fractional factorial design by varying five different input 

parameters such as build orientation, layer thickness, infill density, raster angle and infill pattern as 

shown in Table 2. The current study varies build orientation with two levels and all other four parameters 

are varied with three levels. A total of 18 experimental trials have been created by mixing the input 

parameters of different levels using Minitab 17.0 software. Table 3 shows the experimental design matrix 

in uncoded units for sample preparation. 

 

Table 2. FDM Input Parameters and their Levels 

Input Parameter Symbol S.I Unit Level 1 Level 2 Level 3 

Build Orientation A - Flat On edge - 

Layer Thickness B mm 0.10 0.17 0.24 

Infill Density C % 50 75 100 

Raster Angle D ° 0 45 90 

Infill Pattern E - Cubic Triangles Grid 

 

Table 3. Taguchi L18 Experimental Layout with Input factors in uncoded units 

Trial No A B (mm) C (%) D (°) E 

1 Flat 0.1 50 0 Cubic 

2 Flat 0.1 75 45 Triangles 

3 Flat 0.1 100 90 Grid 

4 Flat 0.17 50 0 Triangles 

5 Flat 0.17 75 45 Grid 

6 Flat 0.17 100 90 Cubic 

7 Flat 0.24 50 45 Cubic 

8 Flat 0.24 75 90 Triangles 

9 Flat 0.24 100 0 Grid 

10 On edge 0.1 50 90 Grid 

11 On edge 0.1 75 0 Cubic 

12 On edge 0.1 100 45 Triangles 

13 On edge 0.17 50 45 Grid 

14 On edge 0.17 75 90 Cubic 

15 On edge 0.17 100 0 Triangles 

16 On edge 0.24 50 90 Triangles 

17 On edge 0.24 75 0 Grid 

18 On edge 0.24 100 45 Cubic 
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Experimental work  

The current study involves measuring the geometric deviations arising in samples prepared through 

FDM process by varying five different input parameters. The sample has been prepared with dimensions 

25 x 20 x 6.4 mm (Length x Width x Thickness respectively) which has good accordance with ASTM 

2240 shore D hardness measurement sample. The prepared samples have been measured for deviations 

in dimensions with reference to the CAD design value by using a digital vernier caliper by taking each 

measurement thrice and the average value have been tabulated for further observation. Figure 3 shows 

the 18 different samples printed as per taguchi’s L18 orthogonal array by combining different input 

parameters. The varying infill patterns considered for the samples such as cubic, triangular and grid is 

depicted in Figure 4. 

 

 
Figure 3. Hardness Specimen as per ASTM 256 Standard 

 

 
Figure 4. Infill Patterns (a) Cubic (b) Triangular (c) Grid 
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Table 4. Measured Values and Geometric Deviations of Experimental Samples 

Trial No A B (mm) C (%) D (°) E 

Measured values Geometric Deviations 

L 

(mm) 
W (mm) 

T 

(mm) 
ΔL (mm) 

ΔW 

(mm) 

ΔT 

(mm) 

1 1 1 1 1 1 25.23 20.07 6.46 0.23 0.07 0.06 

2 1 1 2 2 2 25.42 20.43 6.42 0.42 0.43 0.02 

3 1 1 3 3 3 25.45 20.56 6.42 0.45 0.56 0.02 

4 1 2 1 1 2 25.67 20.74 6.39 0.67 0.74 -0.01 

5 1 2 2 2 3 25.62 20.63 6.20 0.62 0.63 -0.20 

6 1 2 3 3 1 25.68 20.92 6.45 0.68 0.92 0.05 

7 1 3 1 2 1 25.43 20.49 6.39 0.43 0.49 -0.01 

8 1 3 2 3 2 25.89 20.99 6.39 0.89 0.99 -0.01 

9 1 3 3 1 3 25.68 20.79 6.58 0.68 0.79 0.18 

10 2 1 1 3 3 25.05 19.80 6.75 0.05 -0.20 0.35 

11 2 1 2 1 1 25.08 19.74 6.59 0.08 -0.26 0.19 

12 2 1 3 2 2 25.27 19.75 6.80 0.27 -0.25 0.40 

13 2 2 1 2 3 25.44 19.82 7.23 0.44 -0.18 0.83 

14 2 2 2 3 1 25.25 19.83 6.88 0.25 -0.17 0.48 

15 2 2 3 1 2 25.66 19.73 7.27 0.66 -0.27 0.87 

16 2 3 1 3 2 25.39 19.87 7.11 0.39 -0.13 0.71 

17 2 3 2 1 3 25.50 19.67 6.98 0.50 -0.33 0.58 

18 2 3 3 2 1 25.61 19.76 7.24 0.61 -0.24 0.84 

 

The measured values of sample dimensions have been tabulated and observed. The geometric 

deviations recorded in sample length are positive in nature and the maximum deviation of 0.89mm is 

observed when the layer thickness is maximum at flat orientation. The deviations observed are not within 

the tolerance limit of the process ± 0.1mm. At high layer thickness, stair stepping effect will be higher 

and the minimum deviation of 0.05mm is resulted from on edge orientation with lower layer thickness. 

The deviation in width direction is of mixed nature where flat oriented samples have resulted with 

positive deviations and on edge oriented samples have exhibited negative deviations. The deviation 

follows a growing trend when there is an increase in layer thickness in combination with infill density. 

The thickness deviations have both positive and negative values in both the orientations. This is due to 

the fact that the sample undergoes heating and cooling during layer deposition which generally leads to 

sample warping. 

The deviations observed are primarily due to the effect of alternating heating and cooling cycles of 

the process which leads to shrinkage. At higher infill density such as 100 %, the samples get filled 

completely and it induces expansion to the sample when cooling down to room temperature from 

extrusion temperature. The negative deviation of the sample is observed primarily in both width and 

thickness directions. The negative deviation was above the tolerance limit in case of width direction 

when the on-edge orientation was considered. But in terms of thickness direction, flat orientation has 

produced negative deviations and most of them are within the tolerance limit. 

https://revmaterialeplastice.ro/


MATERIALE  PLASTICE                                                                                                                                                                
https://revmaterialeplastice.ro 

https://doi.org/10.37358/Mat.Plast.1964 

Mater. Plast., 61 (1), 2024, 43-65                                                                     51                              https://doi.org/10.37358/MP.24.1.5702   

 

The experimental values are further analyzed using ANOVA with a confidence interval of 95% with 

p ≤0.05 and the results have been observed for significant and insignificant parameter with p value ≤ 

0.05. 

 

Table 5. ANOVA Results for ΔL (mm) 

Source DoF Adj SS Adj MS F-Value P-Value Contribution % 

A 1 0.184022 0.184022 18.3 0.003 21.18 

B 2 0.408044 0.204022 20.29 0.001 46.96 

C 2 0.108344 0.054172 5.39 0.033 12.47 

D 2 0.001078 0.000539 0.05 0.948 0.12 

F 2 0.086978 0.043489 4.32 0.053 10.01 

Error 8 0.080444 0.010056 --- --- 9.26 

Total 17 0.868911 --- --- --- 100 

 

Table 6. ANOVA Results for ΔW (mm) 

Source DoF Adj SS Adj MS F-Value P-Value Contribution % 

A 1 0.72802 0.72802 22.07 0.002 52.53 

B 2 0.16030 0.08015 2.43 0.150 11.57 

C 2 0.13843 0.06922 2.10 0.185 9.99 

D 2 0.04990 0.02495 0.76 0.500 3.60 

F 2 0.04530 0.02265 0.69 0.531 3.27 

Error 8 0.26384 0.03298 --- --- 19.04 

Total 17 1.38580 --- --- --- 100 

 

Table 7. ANOVA Results for ΔT (mm) 

Source DF Adj SS Adj MS F-Value P-Value Contribution % 

A 1 1.22201 1.22201 50.89 0.000 70.02 

B 2 0.20201 0.10101 4.21 0.056 11.58 

C 2 0.06481 0.03241 1.35 0.313 3.71 

D 2 0.03908 0.01954 0.81 0.477 2.24 

F 2 0.02514 0.01257 0.52 0.611 1.44 

Error 8 0.19211 0.02401 --- --- 11.01 

Total 17 1.74516 --- --- --- 100 
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The results of ANOVA indicates that layer thickness is the dominant factor influencing the geometric 

deviations in length with crucial contribution of 46.96%, followed by build orientation with 21.18 % 

and infill density has 12.47% contribution. In case of width variations, build orientation ranks top with 

52.53 and no other factor is found to be significant. For thickness deviations build orientation is the 

significant parameter with 70.02% followed by layer thickness with 11.58%. Table 5, 6 and 7 shows the 

ANOVA results for observed geometric deviations. Table 8 shows the model summary of all the three 

output responses and the value of R-square is more than 80% for all the three output responses which 

ensures the model significance. Table 8 shows the model summary for all the three output responses. 

The maximum error percentage resulted from ANOVA analysis is found to be 19.04 which is in the 

acceptable range. 

 

Table 8. Model Summary for Output Responses 

Output Parameter S R-sq R-sq (adj) R-sq (pred) 

ΔL (mm) 0.10028 90.74% 80.33% 53.13% 

ΔW (mm) 0.18161 80.96% 59.54% 3.61% 

ΔT (mm) 0.15496 88.99% 76.61% 44.27% 

 

The main effect plot generated through Minitab 17.0 software highlights the optimal combination 

for attaining the reduced dimensional inaccuracy for the output responses and response table highlights 

the significant parameter influencing the output responses. Table 9 represents the optimal parameter 

combination and significant input parameter affecting the output response. 

 

Table 9. Summary of Optimal parameter Combination  

and Significant Input parameter 

Output Parameter Optimal Combination Significant Parameter 

ΔL (mm) A2B1C1D3E1 Layer Thickness 

ΔW (mm) A2B1C1D1E1 Build Orientation 

ΔT (mm) A2B1C1D3E2 Build Orientation 

 

The significant parameter recommended by response table and ANOVA results are in good 

accordance. The optimal parameter conditions obtained are found to be different for all the three output 

responses measured and this stimulates the need of conducting multi response optimization of output 

responses through standard procedures. 

 

Multi Objective Optimization 

Multi objective optimization transforms every individual objective in to a combined form to extract 

the optimized parameter setting which can maximize or minimize an output parameter to a desired value. 

The combined objective considers all the output responses in together and finds the ranking of 

alternatives considered. The experimental data is processed for determining the weights to be assigned 

for individual output response and further subjected for multi objective optimization. The combined 

objective becomes a single value after processing the experimental data and it is termed as multi response 

performance index. Alternative with higher value of multi response performance index is considered as 

ranking top. 
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Principal Component Analysis 

The weights of responses need to be calculated for understanding its importance in combined 

objective optimization. The current study utilizes principal component analysis which actually reduces 

the dimension of a dataset by calculating eigen values for the principal components. The principal 

component having the major contribution is considered and after calculating eigen vectors the principal 

component with highest contribution is considered for evaluating the weights of response. In current 

study first principal component is found to have maximum contribution of 66.4% and contribution of 

other principal components is shown in Table 10. After calculating eigen vectors for principal 

components the square of eigen vector of principal component with higher contribution (PC1) is 

considered as the response weight. Hence in current study the weight for change in length is 31%, 48% 

for change in width and 21% for change in thickness. Tables 10 and 11 shows the eigen values and eigen 

vectors for principal components. 

 

Table 10. Eigen values and proportions for Principal Components 

Principal Component Eigen Value Proportion 

First 1.9928 0.664 

Second 0.9409 0.314 

Third 0.0663 0.022 

 

Table 11. Eigen vectors for Principal Components and contributions 

Output Parameter PC1 PC2 PC3 Weightage 

ΔL (mm) 0.555 -0.623 0.551 0.31 

ΔW (mm) 0.696 -0.014 -0.718 0.48 

ΔT (mm) -0.455 -0.782 -0.426 0.21 

 

TOPSIS  

TOPSIS (Technique Order Preference Similar to Ideal Solution) is one of MCDM methods considers 

both the distance of each alternative from the positive ideal and the distance of each alternative from the 

negative ideal point. In other words, the best alternative should have the shortest distance from the 

positive ideal solution (PIS) and the longest distance from the negative ideal. 

In this study there are 3 criteria’s and 18 alternatives that are ranked based on TOPSIS method. The 

following table describes the criteria. 

The Steps of the TOPSIS Method: 

STEP 1: Normalize the decision-matrix. 

The following formula can be used to normalize. 

 

𝑟𝑖𝑗(x) =
𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑚

𝑖=1

      𝑖 = 1, … , 𝑚   ; 𝑗 = 1, …  , 𝑛                     (1) 

 

The following Table 12 shows the normalized matrix. 

STEP 2: Calculate the weighted normalized decision matrix. 

According to the following formula, the normalized matrix is multiplied by the weight of the criteria. 

 

𝑣𝑖𝑗(x) = 𝑤𝑗𝑟𝑖𝑗(𝑥)       𝑖 = 1, … , 𝑚   ; 𝑗 = 1, …  , 𝑛               (2) 
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The following Table 12 shows the weighted normalized decision matrix. 

 

Table 12. Normalized and Weighted Normalized Values PCA-TOPSIS 

Trial 

No 
A 

B 

(mm) 

C 

(%) 
D (°) E 

Normalized Weighted Normalized 

ΔL (mm) ΔW (mm) ΔT (mm) 
ΔL 

(mm) 
ΔW (mm) 

ΔT 

(mm) 

1 1 1 1 1 1 0.1096 0.0343 0.0281 0.0338 0.0166 0.0058 

2 1 1 2 2 2 0.2001 0.2105 0.0094 0.0616 0.1020 0.0019 

3 1 1 3 3 3 0.2144 0.2741 0.0094 0.0660 0.1328 0.0019 

4 1 2 1 1 2 0.3192 0.3622 0.0047 0.0983 0.1755 0.0010 

5 1 2 2 2 3 0.2954 0.3084 0.0938 0.0910 0.1494 0.0194 

6 1 2 3 3 1 0.3239 0.4503 0.0235 0.0998 0.2181 0.0049 

7 1 3 1 2 1 0.2048 0.2398 0.0047 0.0631 0.1162 0.0010 

8 1 3 2 3 2 0.4240 0.4846 0.0047 0.1306 0.2347 0.0010 

9 1 3 3 1 3 0.3239 0.3867 0.0844 0.0998 0.1873 0.0175 

10 2 1 1 3 3 0.0238 0.0979 0.1642 0.0073 0.0474 0.0340 

11 2 1 2 1 1 0.0381 0.1126 0.0891 0.0117 0.0545 0.0185 

12 2 1 3 2 2 0.1286 0.1224 0.1876 0.0396 0.0593 0.0388 

13 2 2 1 2 3 0.2096 0.0881 0.3893 0.0646 0.0427 0.0806 

14 2 2 2 3 1 0.1191 0.0832 0.2252 0.0367 0.0403 0.0466 

15 2 2 3 1 2 0.3144 0.1322 0.4081 0.0968 0.0640 0.0845 

16 2 3 1 3 2 0.1858 0.0636 0.3330 0.0572 0.0308 0.0689 

17 2 3 2 1 3 0.2382 0.1615 0.2721 0.0734 0.0782 0.0563 

18 2 3 3 2 1 0.2906 0.1175 0.3940 0.0895 0.0569 0.0816 

 

STEP 3: Determine the positive ideal and negative ideal solutions. 

The aim of the TOPSIS method is to calculate the degree of distance of each alternative from positive 

and negative ideals. Therefore, in this step, the positive and negative ideal solutions are determined 

according to the following formulas. 

𝐴+ = (𝑣1
+, 𝑣2

+, … , 𝑣𝑛
+)                                                   (3) 

𝐴− = (𝑣1
−, 𝑣2

−, … , 𝑣𝑛
−+)                                                 (4) 

So that 

𝑣𝑗
+ = {(𝑚𝑎𝑥 𝑣𝑖𝑗(𝑥)| 𝑗𝜖𝑗1) , (𝑚𝑖𝑛 𝑣𝑖𝑗(𝑥)| 𝑗𝜖𝑗2)}  𝑖 = 1, … , 𝑚                         (5) 

𝑣𝑗
− = {(𝑚𝑖𝑛 𝑣𝑖𝑗(𝑥)| 𝑗𝜖𝑗1) , (𝑚𝑎𝑥 𝑣𝑖𝑗(𝑥)| 𝑗𝜖𝑗2)}  𝑖 = 1, … , 𝑚                         (6) 

 

where j1 and j2 denote the negative and positive criteria, respectively. 

The following table shows both positive and negative ideal values. 

STEP 4: Distance from the positive and negative ideal solutions 

TOPSIS method ranks each alternative based on the relative closeness degree to the positive ideal 

and distance from the negative ideal. Therefore, in this step, the calculation of the distances between 

each alternative and the positive and negative ideal solution is obtained by using the following formulas. 
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𝑑𝑖
+ = √∑ [𝑣𝑖𝑗(𝑥) − 𝑣𝑗

+(𝑥)]2𝑛
𝑗=1    ,   𝑖 = 1, … , 𝑚                           (7) 

𝑑𝑖
− = √∑ [𝑣𝑖𝑗(𝑥) − 𝑣𝑗

−(𝑥)]2𝑛
𝑗=1    ,   𝑖 = 1, … , 𝑚                           (8) 

 

The following Table 13 shows the distance to the positive and negative ideal solutions. 

STEP 5: Calculate the relative closeness degree of alternatives to the ideal solution 

In this step, the relative closeness degree of each alternative to the ideal solution is obtained by the 

following formula. If the relative closeness degree has value near to 1, it means that the alternative has 

shorter distance from the positive ideal solution and longer distance from the negative ideal solution. 

 

C𝑖 =
𝑑𝑖

−

(𝑑𝑖
++𝑑𝑖

−)
    ,   𝑖 = 1, … , 𝑚                                                          (9) 

 

The following table shows the relative closeness degree of each alternative to the ideal solution and 

its ranking. Table 13 shows the positive ideal, negative ideal solutions and Closeness coefficient values 

with ranking of alternatives. 

 

Table 13. Positive Ideal, Negative Ideal Solution 

and Closeness Coefficient Values 

Trial No Si+ Si- Cci Rank 

1 0.0269 0.2513 0.9034 1 

2 0.1012 0.1709 0.6281 8 

3 0.1302 0.1462 0.5290 13 

4 0.1831 0.1074 0.3697 15 

5 0.1580 0.1144 0.4200 14 

6 0.2218 0.0870 0.2817 17 

7 0.1141 0.1600 0.5836 11 

8 0.2505 0.0835 0.2500 18 

9 0.1948 0.0877 0.3104 16 

10 0.0452 0.2298 0.8358 3 

11 0.0420 0.2257 0.8431 2 

12 0.0656 0.2028 0.7557 5 

13 0.1015 0.2031 0.6669 7 

14 0.0592 0.2192 0.7873 4 

15 0.1313 0.1740 0.5700 12 

16 0.0855 0.2173 0.7176 6 

17 0.1059 0.1690 0.6146 9 

18 0.1220 0.1825 0.5995 10 
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Table 14 ANOVA Results for PCA-TOPSIS Closeness Coefficient Values  

Source DF Adj SS Adj MS F-Value P-Value Contribution % 

A 1 0.175566 0.175566 25.28 0.001 30.01 

B 2 0.219531 0.109766 15.81 0.002 37.52 

C 2 0.081222 0.040611 5.85 0.027 13.88 

D 2 0.004374 0.002187 0.31 0.738 0.75 

F 2 0.048786 0.024393 3.51 0.08 8.34 

Error 8 0.055555 0.006944 --- --- 9.50 

Total 17 0.585035 --- --- --- 100.00 

 

Table 15. Model Summary for PCA-TOPSIS Closeness Coefficient Values 
S R-sq R-sq (adj) R-sq (pred) 

0.08333 90.50% 79.82% 51.93% 

 

The ranking of PCA-TOPSIS ranks the 1st alternative with parameter combination A1B1C1D1E1 as 

the best one and 8th alternative A1B3C2D3E2 as the worst alternative for the combined objectives. The 

ranking of alternatives follows the order 1>11>10>14>12>16>13>2>17>18>7>15>3>5>4>9>6>8.The 

closeness coefficient values are further analyzed using ANOVA with a confidence interval of 95% with 

p-value less than 0.05 is considered as significant. From ANOVA results shown in Table 14, the input 

parameters layer thickness, build orientation and infill density are found to be significant. Layer 

thickness has a crucial contribution of 37.52%, build orientation has 30.01% contribution and infill 

density has 13.88% contribution. The error percentage is 9.50 which is under acceptable range. The 

model summary values indicated in Table 15 ensures that R-squared value with 90.50% is a good sign 

that the changes in output response can be explained by independent variable with an accuracy of 90.50. 

 

Table 16. Response Table for PCA-TOPSIS Closeness Coefficient Values 

Level A B C D E 

1 -6.693 -2.633 -3.701 -4.933 -4.001 

2 -3.294 -6.125 -5.043 -4.481 -5.641 

3 --- -6.223 -6.237 -5.567 -5.339 

Delta 3.398 3.590 2.537 1.087 1.64 

Rank 2 1 3 5 4 

 

 
Figure 5. Main Effect Plot for PCA-TOPSIS Closeness Coefficient Values 
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The closeness coefficient values are further analyzed using signal to noise method with higher the 

better characteristic using Minitab 17.0.The main effect plot shown in Figure  5 recommends the 

combination A2B1C1D2E1 (On edge Orientation , 0.1 mm layer thickness , 50% infill density , 45º 

raster angle and cubic infill pattern) for improving the closeness coefficient value. The response table 

rankings highlighted in Table 16 indicates that layer thickness is the top most influencing parameter 

followed by build orientation, infill density, infill pattern and raster angle. The rankings of response table 

are in good accordance with ANOVA results. 

 

Shanon’s Entropy Method 

Entropy method was introduced in the year 1948 by Shanon which normalizes the experimental data 

through decision matrix and transforms them in to corresponding project outcome. The project outcomes 

evaluated are utilized for computing the entropy measure and to obtain the objective weights which can 

provide the weight of output responses. The weight value calculated shows that changes in thickness has 

maximum weight of 60%, followed by changes in width by 25% and 15% weightage for changes in 

length. Table17 shows the weights obtained for output responses as per entropy method. 

 

Table 17. Weights of output Responses – Entropy 

Output Parameter Weightage 

ΔL (mm) 0.15 

ΔW (mm) 0.25 

ΔT (mm) 0.60 

 

CoCoSo 

Combined Compromise Solution (CoCoSo) method is an integrated approach based on simple 

additive weighting and weighted product models. Its procedural steps are enumerated as below. 

STEP 1: Development of the initial decision matrix as shown in equation 10. The corresponding 

decision matrix is first formulated considering m alternatives (number of experimental trials) and n 

criteria (number of responses). 

𝑋 =  [

𝑥11 𝑥12  … 𝑥1𝑛

𝑥21 𝑥22   …  𝑥2𝑛    

𝑥𝑚1 𝑥𝑚2  … 𝑥𝑚𝑛

]            (10)  

 

STEP 2: Normalization of the decision matrix 

Depending on the type of the criterion considered, the initial decision matrix is now normalized 

employing the following equations 11 and 12. 

The current study focus on reducing the dimensional inaccuracy of the part printed. Hence all the 

four output responses fall under the category of lower the better criterion. 

For beneficial (higher-the-better) criterion: 

𝒏𝒊𝒋 = 
𝒙𝒊𝒋− 𝒎𝒂𝒙 𝒙𝒊𝒋

𝒎𝒂𝒙 𝒙𝒊𝒋    −  
 

𝒎𝒊𝒏 𝒙𝒊𝒋
           (11) 

For non-beneficial (lower-the-better) criterion: 

𝑛𝑖𝑗 = 
     𝑚𝑎𝑥 𝑥 𝑖𝑗    −   

                
 𝑥 𝑖𝑗          

                

𝑚𝑎𝑥 𝑥𝑖𝑗    −  
 

𝑚𝑖𝑛 𝑥𝑖𝑗
      (12) 

where nij is the normalized value of xij. 

STEP 3: Calculation of the power of weighted (Pi) and sum of weighted (Si) comparability sequence 

scores using equation 13 and 14. The power of weighted comparability and sum of weighted 

comparability sequence scores are computed for each of the alternatives. 

𝑃𝑖  = ∑ (𝑛𝑖𝑗)𝑤𝑖𝑗𝑛
𝑗=1      (13) 

 𝑆𝑖  = ∑ (𝑤𝑗  ∗  𝑛𝑖𝑗)𝑛
𝑗=1       (14) 
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STEP 4: Estimation of the appraisal scores the appraisal scores of each alternative can now be 

calculated using the following three aggregation strategies mentioned in equation 15, 16 and 17. 

𝑎𝑖𝑎 = 
(𝑃𝑖 +𝑆𝑖)

∑ (𝑃𝑖  +𝑆𝑖)𝑛
𝑖=1

                     (15) 

𝑎𝑖𝑏 = 
𝑃𝑖

 𝑚𝑖𝑛 𝑃𝑖
+

𝑆𝑖

 𝑚𝑖𝑛 𝑆𝑖
       (16) 

𝑎𝑖𝑐 = 
𝜆∗ 𝑃𝑖+ (1−𝜆)∗𝑆𝑖

𝜆∗𝑚𝑎𝑥 𝑃𝑖+ (1−𝜆)∗𝑚𝑎𝑥 𝑆𝑖
      (17) 

 

The current study considers 𝜆  value as 0.5 (0< 𝜆 <1) 

STEP 5: Calculation of the final appraisal score (Ai) using equation 18. 

 

𝐴𝑖 = (𝑎𝑖𝑎  ∗ 𝑎𝑖𝑏 ∗ 𝑎𝑖𝑐)
1

3  + 
1

3
   (𝑎𝑖𝑎  ∗ 𝑎𝑖𝑏 ∗ 𝑎𝑖𝑐)         (18) 

 

Table 18 shows the normalized and weighted normalized values. 

 

Table 18. Normalized and Weighted Normalized Values Entropy - CoCoSo 

Trial 

No. 
A 

B 

(mm) 

C 

(%) 
D (o) E 

Normalized Weighted Normalized 

L (mm) W (mm) T (mm) L (mm) W (mm) T (mm) 

1 1 1 1 1 1 0.7857 1.0698 0.9419 0.1179 0.2674 0.5651 

2 1 1 2 2 2 0.5595 0.6512 0.9884 0.0839 0.1628 0.5930 

3 1 1 3 3 3 0.5238 0.5000 0.9884 0.0786 0.1250 0.5930 

4 1 2 1 1 2 0.2619 0.2907 1.0000 0.0393 0.0727 0.6000 

5 1 2 2 2 3 0.3214 0.4186 0.7791 0.0482 0.1047 0.4674 

6 1 2 3 3 1 0.2500 0.0814 0.9535 0.0375 0.0203 0.5721 

7 1 3 1 2 1 0.5476 0.5814 1.0000 0.0821 0.1453 0.6000 

8 1 3 2 3 2 0.0000 0.0000 1.0000 0.0000 0.0000 0.6000 

9 1 3 3 1 3 0.2500 0.2326 0.8023 0.0375 0.0581 0.4814 

10 2 1 1 3 3 1.0000 0.9186 0.6047 0.1500 0.2297 0.3628 

11 2 1 2 1 1 0.9643 0.8837 0.7907 0.1446 0.2209 0.4744 

12 2 1 3 2 2 0.7381 0.8605 0.5465 0.1107 0.2151 0.3279 

13 2 2 1 2 3 0.5357 0.9419 0.0465 0.0804 0.2355 0.0279 

14 2 2 2 3 1 0.7619 0.9535 0.4535 0.1143 0.2384 0.2721 

15 2 2 3 1 2 0.2738 0.8372 0.0000 0.0411 0.2093 0.0000 

16 2 3 1 3 2 0.5952 1.0000 0.1860 0.0893 0.2500 0.1116 

17 2 3 2 1 3 0.4643 0.7674 0.3372 0.0696 0.1919 0.2023 

18 2 3 3 2 1 0.3333 0.8721 0.0349 0.0500 0.2180 0.0209 
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Table 19. Compatibility Sequence Score and Appraisal Scores for the Alternatives 

Trial No Si Pi aia aib aic Ai Rank 

1 0.9504 2.1548 0.0725 6.7236 1.0000 3.3617 1 

2 0.8397 2.0557 0.0676 6.1469 0.9324 3.0899 3 

3 0.7966 2.0083 0.0655 5.9102 0.9033 2.9771 5 

4 0.7120 1.8706 0.0603 5.3851 0.8317 2.7207 7 

5 0.6203 1.8370 0.0574 4.9733 0.7913 2.5333 10 

6 0.6299 1.7041 0.0545 4.8312 0.7516 2.4463 11 

7 0.8275 2.0408 0.0670 6.0778 0.9237 3.0568 4 

8 0.6000 0.7360 0.0312 3.3964 0.4303 1.6340 16 

9 0.5770 1.7470 0.0543 4.6783 0.7484 2.3869 12 

10 0.7424 1.9888 0.0638 5.6675 0.8796 2.8667 6 

11 0.8400 2.0731 0.0680 6.1716 0.9381 3.1040 2 

12 0.6537 1.9121 0.0599 5.2089 0.8263 2.6508 8 

13 0.3437 1.4985 0.0430 3.4088 0.5933 1.7816 15 

14 0.6248 1.8790 0.0585 5.0481 0.8063 2.5739 9 

15 0.2504 1.2959 0.0361 2.7606 0.4980 1.4585 18 

16 0.4509 1.6714 0.0496 4.0719 0.6835 2.1057 14 

17 0.4638 1.7158 0.0509 4.1837 0.7019 2.1631 13 

18 0.2890 1.4196 0.0399 3.0829 0.5502 1.6233 17 

 

Table 19 shows the various scores obtained and their rankings. The higher value of appraisal score 

is considered as the best for attaining the combined objectives and the lowest value is considered as the 

worst alternative. Entropy-CoCoSo recommends the combination A1B1C1D1E1 (1st Alternative) as the 

top alternative and A2B2C3D1E2 (15th Alternative) as worst alternative. The ranking of alternative 

follows the order  1>11>2>7>3>10>4>12>14>5>6>9>17>16>13>8>18>15.ANOVA results in Table 

20 indicates that 46.33% contribution goes to layer thickness , 14.93 % of contribution for build 

orientation and infill pattern with 9.44%.The error percentage of ANOVA is resulted with 20.21%. 

 

Table 20. ANOVA Results for Entropy – CoCoSo Appraisal Score 

Source DF Adj SS Adj MS F-Value P-Value Contribution % 

A 1 0.8359 0.8359 5.91 0.041 14.93 

B 2 2.5933 1.2966 9.17 0.009 46.33 

C 2 0.4765 0.2382 1.68 0.245 8.51 

D 2 0.0321 0.0160 0.11 0.894 0.57 

F 2 0.5281 0.2640 1.87 0.216 9.44 

Error 8 1.1315 0.1414 --- --- 20.21 

Total 17 5.5972 --- --- --- 100.00 
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Table 21. Model Summary for Entropy – CoCoSo Appraisal Score 

S R-sq R-sq (adj) R-sq (pred) 

0.376073 79.78% 57.04% 0.00% 

 

Table 22. Response Table for Entropy – CoCoSo Appraisal Score 
Level A B C D E 

1 8.430 9.543 8.260 7.767 8.377 

2 6.815 6.841 7.815 7.545 6.829 

3 --- 6.484 6.793 7.556 7.662 

Delta 1.615 3.059 1.468 0.222 1.549 

Rank 2 1 4 5 3 

 

 
Figure 6. Main Effect Plot for Entropy - CoCoSo Appraisal Score 

 

R-squared value of 79.78% indicates that the changes in output responses can be explained by 

independent variable with an accuracy of 79.78%.Model summary is shown in Table 21.The main effect 

plot produced by analyzing the Entropy-CoCoSo appraisal scores with higher the better, signal to noise 

ratio method recommends the combination A1B1C1D1E1 (Flat Orientation, 0.1 mm layer thickness, 

50% infill density, 0º raster angle and cubic infill pattern) as shown in Figure 6. The response table 

shown in Table 22 ranks layer thickness as top subsequently followed by build orientation, infill pattern, 

infill density and raster angle. The rankings of response table are in good accordance with ANOVA 

results. 

 

Confirmation Trials  

The combination of parameters obtained from both the methods have been considered for 

confirmation trials in order to examine their potential in obtaining reduced dimensional deviations. The 

optimal parameter combination is found to have similarity in the levels of layer thickness, infill density 

and infill pattern. But in case of build orientation and raster angle different factor levels have been 

recommended. 

 

 

 

 

https://revmaterialeplastice.ro/


MATERIALE  PLASTICE                                                                                                                                                                
https://revmaterialeplastice.ro 

https://doi.org/10.37358/Mat.Plast.1964 

Mater. Plast., 61 (1), 2024, 43-65                                                                     61                              https://doi.org/10.37358/MP.24.1.5702   

 

Table 23. Comparison Table for Optimal Parameter Settings 
S. 

No 
Method 

Optimal Parameter 

Combination 
A B (mm) C (%) D (°) E 

ΔL 

(mm) 
ΔW (mm) 

ΔT 

(mm) 

1 
Entropy - 

CoCoSo 
A1B1C1D1E1 Flat 0.1mm 50% 0 Cubic 0.11 0.12 -0.09 

2 PCA-TOPSIS A2B1C1D2E1 On edge 0.1mm 50% 45 Cubic 0.40 -0.27 0.21 

 

 
Figure 7. Comparison of Alternative Ranking’s PCA-TOPSIS and Entropy – CoCoSo 

 

The comparison of rankings obtained for the multi response performance index (Closeness 

Coefficient Values and Final Appraisal scores) shows that the ranking of top alternative is similar for 

both the methods adopted and other rankings are varied. The rankings obtained from both the methods 

have a correlation of 43.46%. Figure 7 shows the plot between the rankings of MRPI values. The 

confirmation trials carried out has revealed that lower deviations are resulted from Entropy – CoCoSo 

method. Table 23 shows the Comparison Table for Optimal Parameter Settings 

 

Machine Learning  

Machine learning techniques enable systems to learn from experience to make wise predictions. 

Decision trees are supervised machine learning techniques which can be used for both classification and 

regression problems. It has a hierarchical tree structure which consists of root node, branch nodes, 

internal nodes and leaf nodes. The current study analyzes the experimental data using three different 

supervised machine learning algorithms such as decision tree, random forest and Naïve Bayes. The final 

appraisal scores obtained from Entropy-CoCoSo has been classified in to class 1 and class 2 instances 

based upon average value 2.4741 from the dataset. Class 1 represents appraisal score values ranging 

from average value (0 – 2.4741) and Class 2 is assigned for above average values (2.4741 – 3.3617). 

Based upon the classification out of 18 instances, 8 instances are classified as class 1 and 10 instances 

are classified as class 2. The dataset has been saved in .CSV format and inputted with Orange open 

source machine learning software with a training-testing split ratio of 75:25. Table 24 shows the dataset 

used for training with classes applied. 
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Table 24. Dataset with Class Labels for Training and Testing using Classification Algorithms 
Trial No A B (mm) C (%) D (o) E Ai Class Label 

1 1 1 1 1 1 3.3617 Class 2 

2 1 1 2 2 2 3.0899 Class 2 

3 1 1 3 3 3 2.9771 Class 2 

4 1 2 1 1 2 2.7207 Class 2 

5 1 2 2 2 3 2.5333 Class 2 

6 1 2 3 3 1 2.4463 Class 1 

7 1 3 1 2 1 3.0568 Class 2 

8 1 3 2 3 2 1.6340 Class 1 

9 1 3 3 1 3 2.3869 Class 1 

10 2 1 1 3 3 2.8667 Class 2 

11 2 1 2 1 1 3.1040 Class 2 

12 2 1 3 2 2 2.6508 Class 2 

13 2 2 1 2 3 1.7816 Class 1 

14 2 2 2 3 1 2.5739 Class 2 

15 2 2 3 1 2 1.4585 Class 1 

16 2 3 1 3 2 2.1057 Class 1 

17 2 3 2 1 3 2.1631 Class 1 

18 2 3 3 2 1 1.6233 Class 1 

 

Table 25. Comparison of Evaluation Metrics – Classification Algorithms 

Method AUC CA F1 Precision Recall 

Tree 0.938 0.889 0.889 0.889 0.889 

Random Forest 0.950 0.778 0.778 0.778 0.778 

Naïve Bayes 0.994 0.994 0.994 0.949 0.944 

 

 
Figure 8. Schematic representation of Machine Learning Workflow 
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Table 25 shows the values of evaluation metrics for dataset trained using classification algorithms. 

From the results, it can be observed that the performance of Naïve Bayes algorithm is superior to other 

models considered. It has resulted with a maximum accuracy of 99.4% followed by decision tree method 

with 88.9% and 77.8% accuracy is attained by random forest method. Naïve Bayes method can predict 

the targeted output response values with low error percentage. Figure 8 shows the schematic 

representation of machine learning workflow. 

 

4. Conclusions 
The current study has considered nylon filament reinforced with 20% carbon fiber to investigate the 

effect of five different input factors such as build orientation, layer thickness, infill density, raster angle 

and infill pattern. The geometric devotions observed using combined approaches such as Entropy-

CoCoSo and PCA-TOPSIS. The multi response performance index values further trained using 

classification based machine learning algorithms. The major findings are summarized below. 

The deviations in sample length, width and thickness has been tabulated for analysis and it is 

observed that only positive deviations have occurred in the length dimension, both positive and negative 

deviations are resulted in width and thickness dimensions. 

ANOVA has been employed to find the significant parameter in an individual manner and it has been 

understood layer thickness is dominant for deviations in length with 46.96% contribution. Build 

orientation has superior dominance than other parameters over width and thickness deviations with 52.53 

and 70.02% contribution.  

Main effect plot has recommended different combinations for reducing the deviations separately, 

where A2B1C1D3E1 is recommended for reducing deviations in length, A2B1C1D1E1 is recommended 

for reducing deviations in width and A2B1C1D3E2 is suggested for reducing deviations in thickness. 

The significance recommended by both ANOVA and Response table are similar. 

The weights of output responses have been evaluated using entropy and principal component analysis 

methods. Entropy method has recommended 15% weigh for change in length, 25% weight for change 

in width and 60% weight for change in thickness. But Principal component method has recommended 

31% weigh for change in length, 48% weight for change in width and 21% weight for change in 

thickness. 

The optimal parameter combination suggested by Entropy-CoCoSo method A1B1C1D1E1 has 

resulted in lowest geometric deviation such as ΔL = 0.11 mm, ΔW = 0.12 mm and ΔT = -0.09 mm when 

comparing the optimal parameter combination recommended by PCA-TOPSIS method A2B1C1D2E1, 

where ΔL = 0.40 mm, ΔW = -0.27 mm and ΔT = -0.21 mm. Only the top ranked alternative is similar 

from both the methods adopted. 

Layer thickness is the top ranked parameter affecting the multi response performance index values 

towards combined objectives with maximum contribution of 46.33 % and subsequently followed by part 

orientation. 

The multi response performance index values of Entropy-CoCoSo method has been trained and 

tested using decision tree, random forest and Naïve Bayes algorithm. Naïve Bayes algorithm out-

performed other classification algorithm with 99.4% classification accuracy. 

Regression based ML algorithms may be employed to analyse the experimental outcome to identify 

the optimal parameter settings which reduces dimensional error in all three directions. 

Confirmation trails conducted have shown that the optimal parameter combinations obtained through 

Entropy-CoCoSo method has low dimensional error and they are much closer to the tolerance limit.  

Post processing of the printed samples may further reduce the deviation. 
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